If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34y-3y^2=90
We move all terms to the left:
34y-3y^2-(90)=0
a = -3; b = 34; c = -90;
Δ = b2-4ac
Δ = 342-4·(-3)·(-90)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{19}}{2*-3}=\frac{-34-2\sqrt{19}}{-6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{19}}{2*-3}=\frac{-34+2\sqrt{19}}{-6} $
| 7x+6-2x=3(3x-2) | | 8h-9=6h+21=h | | 18-4xx=3 | | 3w+5+12w-3=3w-6 | | 3-d=-11 | | 6-m=-8 | | 2r-5=4r+5 | | 1/3y+7=-7 | | -13q=-15q+16 | | 247f=-4 | | 6v+33=9(v+6) | | 2x-(x-5)=13 | | -8p+5=-6p-17 | | 2(-x-7)=22 | | 13=n/3+10 | | 3x²-2x+5=4 | | 2x-(x-5=13 | | 3x-5=2x=25 | | 8t-(6t-1)/2=(5) | | 8-b=-2 | | 10+12j-17j=-10-3j | | (x-10)^2-1=0(x−10)2−1=0 | | 3+9r=8r | | 1/2(4x-6)-7=5+2/3(3x+4) | | 8t-(6t-1)/2=(10) | | -20=p/6-22 | | 5x+5x-9=32 | | −2x−x+8=x | | -2.2x-4.2x=-66.3 | | -3(t+82)=-60 | | (11x-1)+(20x-3)+(6x-11)=81 | | 6d=5d+7 |